If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20y^2=90
We move all terms to the left:
20y^2-(90)=0
a = 20; b = 0; c = -90;
Δ = b2-4ac
Δ = 02-4·20·(-90)
Δ = 7200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7200}=\sqrt{3600*2}=\sqrt{3600}*\sqrt{2}=60\sqrt{2}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-60\sqrt{2}}{2*20}=\frac{0-60\sqrt{2}}{40} =-\frac{60\sqrt{2}}{40} =-\frac{3\sqrt{2}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+60\sqrt{2}}{2*20}=\frac{0+60\sqrt{2}}{40} =\frac{60\sqrt{2}}{40} =\frac{3\sqrt{2}}{2} $
| 10x+3x+2(3x-7)+1-(5-3x)=7-6(1-2x) | | 4^x*4=-3^x | | 4(3x-2)=5(6x+5)+60 | | 1/4x=x-9 | | 8x-7=-6x-24 | | 3(n–5)=27= | | 3x=6(3x+5) | | 2-2(3x-5)+13=6x+4(2x-6)+3 | | 4(2x-1)-3(1-x)=0 | | -3x-24=x+4 | | -2-6x=3x-24 | | (y+9)/4=(3y-5)/2 | | 5x-4+2x+7=11+5x-4-4x+11x | | 6(a+3)=# | | 70+80+2x=360 | | 4x-7=14-x | | 7x-5=13(2) | | 2d/3+1=108 | | 8+2X(x+4)=36 | | -2=1x-14 | | 8-13x+17=5x+4+3x | | x^2+25x-154=0 | | x*3+x=50 | | 7a-a²+3a+4= | | n+4/8=-4 | | n4/8=-4 | | 2x+11=6x+31 | | 2y-5=31 | | 4x-36=-6(x-9) | | (U-5)x9=54 | | 2(w-3)=5w-15 | | 6=m-11 |